Do transposable elements really contribute to proteomes?

نویسندگان

  • Valer Gotea
  • Wojciech Makałowski
چکیده

Recent studies indicate that the initial classification of transposable elements (TEs) as 'useless', 'selfish' or 'junk' pieces of DNA is not an accurate one. TEs seem to have complex regulatory functions and contribute to the coding regions of many genes. Because this contribution had been documented only at transcript level, we searched for evidence that would also support the translation of TE cassettes. Our findings suggest that the proportion of proteins with TE-encoded fragments (approximately 0.1%), although probably underestimated, is much less than what the data at transcript level suggest (approximately 4%). In all cases, the TE cassettes are derived from old TEs, consistent with the idea that incorporation (exaptation) of TE fragments into functional proteins requires long evolutionary periods. We therefore argue that functional proteins are unlikely to contain TE cassettes derived from young TEs, the role of which is probably limited to regulatory functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein-Coding Genes’ Retrocopies and Their Functions

Transposable elements, often considered to be not important for survival, significantly contribute to the evolution of transcriptomes, promoters, and proteomes. Reverse transcriptase, encoded by some transposable elements, can be used in trans to produce a DNA copy of any RNA molecule in the cell. The retrotransposition of protein-coding genes requires the presence of reverse transcriptase, whi...

متن کامل

Gene Drive: Evolved and Synthetic

Drive is a process of accelerated inheritance from one generation to the next that allows some genes to spread rapidly through populations even if they do not contribute to-or indeed even if they detract from-organismal survival and reproduction. Genetic elements that can spread by drive include gametic and zygotic killers, meiotic drivers, homing endonuclease genes, B chromosomes, and transpos...

متن کامل

Genome-Wide Survey of Ds Exonization to Enrich Transcriptomes and Proteomes in Plants

Insertion of transposable elements (TEs) into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization which can enrich the complexity of transcriptomes and proteomes. Previously, we performed the first experimental assessment of TE exonization by inserting a Ds element into each intron of the rice epsps gene. Exonization of Ds in plants was bias...

متن کامل

Transposable elements in human cancers by genome-wide EST alignment.

Transposable elements may affect coding sequences, splicing patterns, and transcriptional regulation of human genes. Particles of the transposable elements have been detected in several tissues and tumors. Here, we report genome-wide analysis of gene expression regulated by transposable elements in human cancers. We adopted an analysis pipeline for screening methods to detect cancer-specific ex...

متن کامل

Transposable elements and human cancer: a causal relationship?

Transposable elements are present in almost all genomes including that of humans. These mobile DNA sequences are capable of invading genomes and their impact on genome evolution is substantial as they contribute to the genetic diversity of organisms. The mobility of transposable elements can cause deleterious mutations, gene disruption and chromosome rearrangements that may lead to several path...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Trends in genetics : TIG

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2006